
1. Introduction
The polar regions, in particular the Arctic, are on the front line of the climate crisis. In recent decades, the rate 
of surface warming in the Arctic has been two to four times higher than the global mean (Rantanen et al., 2022), 
a phenomenon known as Arctic amplification (e.g., Graversen et al., 2008; Serreze & Barry, 2011; Serreze & 
Francis, 2006). Alongside rising temperatures have occurred losses of around 50% in both thickness and extent 
of Arctic sea ice at the end of summer since satellite records began (Gascard et al., 2019). The rate of Arctic sea 
ice loss in the coming decades remains highly uncertain (Bonan, Lehner, & Holland, 2021; Bonan, Schneider, 
et al., 2021), however the consequences are expected to be severe: for local ecosystems (Kovacs et al., 2011; Post 
et al., 2013; Tynan, 2015); for indigenous peoples (Meier et al., 2014); and, potentially, for lower-latitude climate 
(Cohen et al., 2014, 2020; Jung et al., 2015; Liu et al., 2022). Heat exchanges between sea ice and the atmosphere 
are a key driver of the Arctic amplification (e.g., Lesins et al., 2012; Previdi et al., 2021; Serreze et al., 2009) and 
determine the sea ice melting rate (e.g., Rothrock et al., 1999; Screen & Simmonds, 2010).

Turbulent exchanges of heat and momentum in the planetary boundary layer are not directly simulated in weather/
climate models, but are instead represented through parametrizations, typically bulk formulae based on the 
Monin-Obukhov Similarity Theory (MOST, Monin & Obukhov, 1954; Garratt, 1994). Such parametrizations are 
semi-empirical: although the MOST provides dimensionless relationships, their final forms cannot be determined 
without recourse to observational data (e.g., calibration of roughness models and stability functions). The polar 
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boundary layer is influenced by the presence of sea ice and is characterized by high stability and often intermit-
tent turbulence (e.g., Andreas, 1998). Polar-specific stability functions have been proposed (Grachev et al., 2007), 
as well as formulations of surface roughness (e.g., Andreas, 1987, 2011; Andreas, Persson, et al., 2010). More 
recently, parametrizations have been developed that account for form drag arising from alternating sea ice floes 
and leads (e.g., Elvidge et al., 2016; Lüpkes & Gryanik, 2015; Lüpkes et al., 2012). Use of polar-specific turbu-
lence parametrizations has been found to reduce biases in atmospheric models (Elvidge et al., 2023; Renfrew 
et al., 2019), however adoption of these advanced parametrizations in climate models has until recently been 
limited. The historic scarcity of observations in the Arctic likely goes some way to explaining modelers' caution, 
yet there are also longstanding unresolved problems with modeling even homogeneous stable boundary layers 
(e.g., the GABLS experiments, Bosveld et al., 2014; Cuxart et al., 2006; Svensson et al., 2011).

Outside the polar regions, where observations have historically been more readily available, machine learning 
(ML) has emerged in recent years as an alternative strategy for parametrizing boundary-layer processes (Pal & 
Sharma, 2021). The basic idea of the ML or data-driven approach is that, given sufficient observational data, 
statistical algorithms can be used to directly infer empirical relationships between quantities of interest, such as 
surface turbulent fluxes, and mean meteorological variables such as temperature, humidity, etc. Recent studies 
have found that ML parametrizations, based on artificial neural networks (ANNs), can predict surface turbulent 
fluxes measured at meteorological towers in extra-polar regions with greater accuracy than bulk algorithms based 
on the MOST (Leufen & Schädler, 2019; McCandless et al., 2022; Wulfmeyer et al., 2022). These findings were 
extended to the Arctic by Cummins et al. (2023), hereafter C23, who showed that, even with the relatively small 
volume of data collected in previous Arctic campaigns, it is nevertheless possible to train ANNs that can outper-
form a polar-specific bulk algorithm.

The present study is motivated by the recent publication of surface turbulent flux observations collected at the 
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC, Shupe et  al.,  2022). The 
MOSAiC data set provides a unique opportunity to test the hypothesis, motivated by the encouraging results of 
C23, that ML parametrizations trained on data with limited spatiotemporal scope in the data-sparse Arctic are 
broadly applicable to the pan-Arctic sea ice domain. In this paper, we employ the MOSAiC data first to validate 
the performance of the ANNs of C23, using a MOST-based bulk algorithm as a baseline. We then incorporate 
the MOSAiC data into the ANN training set to generate an improved set of flux parametrizations for use in polar 
conditions (see Data Availability Statement). The remainder of this paper is organized as follows. Section  2 
briefly recaps the data sets used in C23 and introduces the new MOSAiC data. Section 3 describes the ML and 
bulk algorithm flux parametrizations used in this study and the statistical methods used to evaluate their perfor-
mance. Section 4 presents the results. Conclusions and recommendations for modelers are given in Section 5.

2. Data
2.1. Pre-MOSAiC Observational Campaigns

C23 trained and validated ANN models using surface turbulent flux measurements from four observational 
campaigns conducted over Arctic sea ice: Surface Heat Budget of the Arctic Ocean (SHEBA, Andreas et al., 1999; 
Persson et al., 2002; Uttal et al., 2002); Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCA-
CIA, Elvidge et al., 2016); Arctic Cloud in Summer Experiment (ACSE, Prytherch et al., 2017; Sotiropoulou 
et al., 2016); and Arctic Ocean 2016 (AO16, Srivastava et al., 2022; Tjernström & Jakobsson, 2021). These data 
sets sample a range of seasons and meteorological conditions in the Arctic. The sea ice varies in concentration 
(between zero and one), as well as in its morphology. For example, the ice surrounding the year-long SHEBA 
camp was compact and snow-covered in winter (Andreas, Persson, et  al.,  2010), but littered with deep melt 
ponds and leads in summer (Andreas, Horst, et al., 2010). It should be noted that C23 omitted from the training 
set observations in ACCACIA that were collected at heights >30 m above the surface. Surface turbulent fluxes 
in climate models are typically calculated much closer to the surface (e.g., ∼10 m in CNRM-CM6-1, Roehrig 
et al., 2020; Voldoire et al., 2019). Satellite estimates of sea ice concentration were obtained from the National 
Snow and Ice Data Center (NSIDC, Meier et al., 2021).

2.2. MOSAiC

For the MOSAiC expedition, the icebreaker RV Polarstern was frozen into the Arctic sea ice and drifted with 
it for most of a year between October 2019 and October 2020. The original ice floe, on which the MOSAiC 
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camp was established in October 2019, exited into the North Atlantic in late July 2020. Polarstern then reposi-
tioned near the North Pole at a new ice floe for August and September 2020. Various scientific research sites 
were established on the ice surrounding the ship, in a fashion similar to SHEBA although on a larger scale. As 
part of MOSAiC, extensive measurements were taken of the Arctic atmospheric system (Shupe et al., 2022). 
Surface turbulent fluxes of momentum, sensible heat and latent heat were computed at multiple locations using 
eddy-covariance techniques together with high-frequency (sampling rates of 10–20 Hz) observations from ultra-
sonic anemometers. Eddy covariances were computed over 10-min sampling periods. Turbulence measurements 
were made at a meteorological tower with sensors at 2, 6, and 10 m above the initial snow/ice surface. Data from 
all three tower levels were used in this study. Flux measurements were also taken at 3.8 m at the three Atmos-
pheric Surface Flux Stations (ASFS), analogous to the Portable Automated Mesonet (PAM) stations in SHEBA. 
ASFS 30/40 were deployed at ∼13 km from the tower and ASFS50 at ∼23 km. Note that, due to accumulation 
and ablation of snow, the actual measurement heights varied over time. MOSAiC data used in this study were 
subject to Level3.4 quality control (see Data Availability Statement). MOSAiC increased the size of the C23 flux 
database by a factor of five for momentum and sensible heat and four for latent heat.

3. Methods
Surface turbulent fluxes are typically computed in climate models through bulk algorithms using wind, tempera-
ture and humidity at the single model level closest to the surface (e.g., in the SURFEX module in CNRM-CM6-1, 
Voldoire et al., 2019). The MOST, or a simplified version thereof, may then be used to extrapolate the vertical 
profiles of meteorological variables in the surface layer (Geleyn, 1988). Flux parametrizations in this study have 
been developed as plug-in replacements for bulk algorithms and therefore expect similar inputs. For the MOSAiC 
ASFS data, the wind and temperature/humidity measurements were made at different heights above the snow/ice 
surface (3.86 and 2.13/1.84 m respectively). While this doesn't preclude a direct application of the bulk approach 
(since the MOST does not require measurements of those variables at the same height), it means that some 
pre-processing is required before the ANNs of C23 can be used. The wind speed, measured at a single height, 
was not interpolated. Instead, the temperature/humidity measurements were linearly extrapolated to 3.86 m, using 
the observed gradient between the surface and the measurement height. Surface specific humidity was computed 
from temperature and pressure using the meteolib Python library (see Data Availability Statement). More sophis-
ticated alternatives include a logarithmic extrapolation, or one based on the full MOST. However, our own 
numerical tests, conducted using equivalent measurements at 2 and 6 m on the meteorological tower, found the 
linear extrapolation to outperform the logarithmic in a root-mean-square error (RMSE) sense. Using the MOST 
approach would naturally introduce a bias in favor of that methodology. Different sensors were also mounted at 
slightly different heights around the nominal height of each tower level. Taking the heights of different sensors 
as the measurement height was found to have a small impact on the accuracy of flux predictions (±10% RMSE). 
In the final analysis, it was decided to use the nominal heights of the tower levels, corrected for snow thickness, 
which is consistent with how C23 treated data from the meteorological tower of the SHEBA campaign.

C23 developed ML flux parametrizations based on single-layer, feed-forward ANNs with four nodes in the hidden 
layer. For a high-level introduction to statistical modeling with neural networks, see Hastie et al. (2009) or Kuhn 
and Johnson (2013). These models are general-purpose non-linear functions (Hornik et al., 1989), permitting a 
high degree of variable interaction, and containing 37 tuneable parameters. Each ANN takes seven mean mete-
orological variables as inputs: the measurement height z; absolute horizontal windspeed u(z); potential tempera-
tures θ(z), θs of the air and at the surface respectively; specific humidities q(z), qs; and the sea ice concentration 
Ci, determined over a 25 × 25 km 2 domain. The relative importance of the different inputs to the bulk and ANN 
methods was explored by C23, who found that the ANNs depend less critically on the vertical gradients. The 
models were trained on the pre-MOSAiC data using the nnet library for the statistical programming language 
R (R Core Team, 2021; Venables & Ripley, 2002). A weight decay of λ = 0.01 was used for regularization and 
the networks were fitted in ensembles of 100 models to reduce variability due to random parameter initialization 
(Ripley, 1996). The fitted ANNs output turbulent fluxes of momentum 𝐴𝐴 𝐴𝐴

2

⋆
 , sensible heat u⋆θ⋆ and latent heat 

u⋆q⋆. Predicted fluxes are returned in kinematic units, that is, in the same units as the measured eddy covariances, 
and hence are written here in terms of the MOST scaling parameters u⋆, θ⋆, q⋆.

The polar-specific bulk algorithm, used in this study as a baseline against which to compare the ANNs, is the 
same as that described in C23. Over open water, the iterative COARE 3.0 algorithm is used (Edson et al., 2013; 
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Fairall et al., 2003), with stability functions from Grachev et al. (2000) in unstable conditions and from Beljaars 
and Holtslag (1991) in stable conditions. The COARE 3.0 algorithm has been well tested over the years and is 
currently in use in large-scale climate models, including CNRM-CM6-1. Bulk transfer coefficients are initialized 
using a non-iterative estimate of the stability (Grachev & Fairall, 1997). Over sea ice, the stability function from 
Grachev et al. (2007) is used in stable conditions, as well as the scalar roughness model of Andreas (1987) and the 
aerodynamic roughness model of Andreas, Persson, et al. (2010). For partial sea ice concentrations, we use the 
mosaic approach (e.g., Vihma, 1995), whereby we take a weighted average of fluxes computed over open water 
and over sea ice, with the weighting given by the sea ice concentration. An additional form drag contribution 
is included when computing the momentum flux, to account for the influence of intermittent sea ice coverage 
(Lüpkes & Gryanik, 2015). Intermittent ice coverage is associated with vertical ice surfaces that tend to increase 
turbulence. This bulk algorithm is available for download as a Python library (see Data Availability Statement). 
Compared against estimates from unmodified COARE 3.0, momentum flux estimates from our bulk algorithm 
have lower RMSE at the MOSAiC sites (up to a 16% reduction). The polar-specific components have less impact 
on the heat fluxes: there is a 99% correlation between our heat fluxes and those from COARE 3.0. The results 
of our comparison with ML in Section 4 are robust to the use/non-use of polar-specific components in the bulk 
algorithm.

In C23, the ML and bulk algorithm flux parametrizations were tested using a campaign-wise cross-validation 
scheme. Each campaign (or measurement site in the case of SHEBA) was left out of the training set in turn and 
the trained models validated on that campaign. Flux predictions from the two methods, together with measured 
eddy covariances, were used to compute performance metrics, such as RMSE, mean absolute error and Pearson 
correlation. Since the MOSAiC data were not involved in the calibration of either parametrization, they constitute 
an independent test set and are therefore ideal for model validation and comparison. Mean meteorological vari-
ables, measured at each of the MOSAiC sites, were supplied as input variables and predicted fluxes calculated. 
In addition to these truly out-of-sample predictions, further flux estimates were obtained from ANNs fitted to 
MOSAiC-augmented training sets: for each site in MOSAiC, an ANN model was fitted to a training set compris-
ing the pre-MOSAiC data plus all MOSAiC data not observed at that site. Iterating over the MOSAiC sites then 
gives a complete set of out-of-sample predictions, which allows us to quantify any gains in predictive power 
obtained from the MOSAiC data.

4. Results
Performance metrics, computed for the bulk algorithm and ANN parametrizations at each of the MOSAiC sites, 
are given in Table 1. Figures 1–3 show two-dimensional histograms of predicted fluxes against measured eddy 
covariances at each site. Note that results at the meteorological tower do not differ qualitatively between tower 
levels in terms of patterns/biases, however there is a small dependence of predictive accuracy on measurement 
height. Specifically, both the bulk algorithm and neural network methods have slightly lower RMSE (∼10%) 
when applied at 10 m compared with 2 m. This is as expected: the 10-m differences of the meteorological vari-
ables are larger than the corresponding 2 m differences, so if the measurement errors at the different levels are 
similar in magnitude then the 10-m differences should have lower relative error. Any inaccuracies in the estimated 
measurement heights should also be proportionally smaller at 10 m. Overall, the results are encouraging, with the 
ANN parametrizations consistently delivering performance improvements over the bulk algorithm, particularly 
in the stable conditions which predominate in MOSAiC.

Both methods produce similar estimates of the momentum flux 𝐴𝐴 𝐴𝐴
2

⋆
 and the two-dimensional histograms in 

Figure 1 share common features, such as a conservative bias (systematic underprediction of larger fluxes). 
However, the ANNs achieve a lower RMSE at all the MOSAiC sites: a result which is robust under boot-
strap resampling (Davison & Hinkley, 1997). The conservative bias of the ANNs was noted by C23 and is a 
known property of the models. In short, the ANNs have an inbuilt reluctance to extrapolate when faced with 
a combination of inputs not seen in training. That the bulk algorithm also underpredicts 𝐴𝐴 𝐴𝐴

2

⋆
 is unexpected and 

warrants investigation (see final paragraph of this section). Augmenting the ANN training set with data from 
MOSAiC reduces the RMSE of the ANNs at all sites and produces a visible attenuation of the conservative 
bias for larger fluxes. This result indicates that the conditions conducive to large 𝐴𝐴 𝐴𝐴

2

⋆
 were consistent across 

the MOSAiC sites.
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Site Samples

RMSE MAE Correlation

bulk nnet nnet+ bulk nnet nnet+ bulk nnet nnet+

𝐴𝐴 𝐴𝐴
2

⋆
 ASFS30 22,161 0.039 0.035 0.033 0.021 0.018 0.019 0.92 0.92 0.92

ASFS40 18,498 0.035 0.034 0.029 0.020 0.019 0.017 0.94 0.93 0.93

ASFS50 18,871 0.031 0.027 0.025 0.015 0.013 0.014 0.93 0.94 0.93

met. tower 66,777 0.049 0.047 0.044 0.025 0.023 0.023 0.90 0.89 0.89

u⋆θ⋆ ASFS30 22,161 0.0091 0.0057 0.0045 0.0066 0.0043 0.0033 0.80 0.81 0.85

ASFS40 18,498 0.0113 0.0071 0.0058 0.0089 0.0052 0.0041 0.70 0.74 0.78

ASFS50 18,871 0.0056 0.0045 0.0049 0.0041 0.0033 0.0036 0.77 0.81 0.80

met. tower 66,777 0.0073 0.0066 0.0062 0.0046 0.0040 0.0038 0.69 0.71 0.73

u⋆q⋆ ASFS30 2,692 3.20E−06 8.43E−07 1.06E−06 2.21E−06 5.83E−07 7.85E−07 0.75 0.63 0.63

ASFS50 3,436 9.88E−07 8.93E−07 8.50E−07 6.55E−07 4.96E−07 4.63E−07 0.79 0.67 0.70

met. tower 33,185 5.30E−07 5.94E−07 5.87E−07 2.97E−07 3.53E−07 3.43E−07 0.67 0.48 0.50

Note. The nnet+ columns show results for ANNs trained using MOSAiC-augmented data. Boldface indicates a better score in one of root-mean-square error (RMSE), 
mean absolute error (MAE) or Pearson correlation. Using bootstrapping, all score differences were found to be statistically significant at the five-percent level (Davison 
& Hinkley, 1997). Direct measurements of u⋆q⋆ are not available at ASFS40.

Table 1 
Predictive Performance of Neural Network (nnet/nnet+), and Monin-Obukhov (bulk) Flux Parametrizations at the MOSAiC Sites in Kinematic Units

Figure 1. Predicted momentum fluxes 𝐴𝐴 𝐴𝐴
2

⋆
 at the MOSAiC sites plotted against observed eddy covariances. To the left are estimates obtained from a polar-specific bulk 

algorithm based on the Monin-Obukhov Similarity Theory; in the center, estimates from the neural networks of Cummins et al. (2023); to the right, estimates from 
neural networks trained using MOSAiC-augmented data. The diagonal line y = x would represent a perfect fit.
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The ANN parametrization outperforms the bulk algorithm as an estimator of the sensible heat flux u⋆θ⋆, with RMSE 
10–40 percent lower across the sites. It can be seen from Figure 2 that the improvements over the bulk are particularly 
apparent at the ASFS30 and ASFS40 stations. As was the case for 𝐴𝐴 𝐴𝐴

2

⋆
 , the prediction errors of the two u⋆θ⋆ parametri-

zations share common features, including some clearly non-random deviations from the line y = x. In particular, there 
is a long tail in the panels for the met. tower in Figure 2, comprised of large upwards fluxes (negative eddy covari-
ance) whose magnitude was underestimated by both the bulk and ANN parametrizations. These fluxes occurred in 
near-neutral conditions, defined by Högström (1988) as |ζ| < 0.1 where ζ is the Obukhov stability parameter. There 
was little temperature gradient in the surface layer and it is possible that non-local turbulence played a role. Large 
prediction errors also occurred when there was a strong surface-layer gradient but observed fluxes were small, again in 
near-neutral conditions. Including MOSAiC data from other sites in the ANN training set produces clear improvements 
at three of the four sites, with several systematic features in the residuals disappearing. The predictions at the ASFS50 
site, however, became worse. Prediction errors at ASFS50 are the lowest for 𝐴𝐴 𝐴𝐴

2

⋆
 and u⋆θ⋆, so it doesn't necessarily follow 

that the site is at fault. There may be locally varying factors, not included in the set of input variables, which affect the 
fluxes (see final paragraph of this section). Identifying such variables has the potential to deliver further performance 
gains, especially in near-neutral conditions where performance of both algorithms is worse.

Latent heat flux u⋆q⋆ is by far the most difficult of the three fluxes to predict: u⋆q⋆ was generally small in magni-
tude at the MOSAiC measurement sites, suggesting a low signal-to-noise ratio. The ANNs are also disadvantaged 
here by a small training set from previous campaigns, comprised mainly of very small fluxes (C23). Results for 

Figure 2. Predicted sensible heat fluxes u⋆θ⋆ at the MOSAiC sites plotted against observed eddy covariances. See Figure 1 caption for details.
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u⋆q⋆ are therefore unsurprising: to the extent that the measured fluxes are small in magnitude, the ANNs perform 
well. For larger fluxes, the ANNs exhibit a strong conservative bias. Conversely, the bulk algorithm tends to 
overpredict the magnitude of u⋆q⋆. It is because of these contrasting biases that the bulk achieves a higher corre-
lation at the ASFS30 and ASFS50 stations, while at the same time the ANNs give RMSE reductions at those 
sites of about 70% and 10% respectively. At the MOSAiC tower, the bulk algorithm performs better, achieving a 
10-percent lower RMSE. The ANNs trained on the MOSAiC-augmented data perform better at the ASFS50 site 
and the tower, but slightly worse at ASFS30. From Figure 3 it can be seen that the underestimation bias, while 
still present, is improved by training with MOSAiC data.

Figure 3. Predicted latent heat fluxes u⋆q⋆ at the MOSAiC sites plotted against observed eddy covariances. See Figure 1 caption for details.
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It should be noted that the biases, visible in the MOSAiC-augmented ANN predictions in Figures 1–3, should be 
further reduced by the next step, which is to incorporate all the MOSAiC data in the ANN training set. As more 
observations become available, we would expect the as-yet-unsampled regions of the input space to diminish, along 
with the associated biases. That is not to say that all biases can be resolved through more training data. As mentioned 
above, omission of important predictor variables has the potential to induce biases that will persist regardless of the 
volume of training data. For example, the upwards and downwards radiation terms are known to contribute signfi-
cant explanatory power (e.g., Wulfmeyer et al., 2022). These radiation terms are nevertheless unsuitable for use as 
parametrization inputs, because the radiative fluxes in GCMs are themselves the output of complex parametriza-
tions with their own errors and uncertainties. The surface characteristics may also be an important missing variable. 
In MOSAiC, the winter sea ice may have been generally aerodynamically rougher than that seen in the SHEBA 
campaign. This could potentially explain the underestimation of 𝐴𝐴 𝐴𝐴

2

⋆
 by both the ANN and bulk algorithm parametriza-

tions (see Figure 1). Finally, turbulent heat fluxes over sea ice are known to be influenced by lead width (e.g., Marcq 
& Weiss, 2012), although the exact nature of the dependency is a topic of ongoing research (Gryschka et al., 2023). 
Including the lead-width distribution as an input to the ANNs could shed additional light on this question.

5. Conclusions
Accurate representation in climate models of turbulent heat exchanges between the surface and atmosphere in 
polar regions is essential for constraining predictions of future climate change, locally and potentially globally. 
Surface turbulent fluxes in the polar boundary layer are currently parametrized using the traditional MOST, 
although alternative ML parametrizations based on ANNs have recently been proposed (C23). The wealth of new 
flux observations collected in the Arctic during the MOSAiC campaign has provided an excellent opportunity to 
validate and calibrate these alternative parametrizations.

In this study, the MOSAiC data have been used to validate ANN parametrizations of momentum, sensible heat 
and latent heat fluxes, that were originally trained on data from previous Arctic campaigns. The ANNs have 
been found to generalize well to the new data, particularly for momentum and sensible heat, yielding substantial 
reductions in error metrics such as RMSE when compared against a polar-specific bulk algorithm based on the 
MOST. Although the ANNs performed well at predicting small latent heat fluxes, limitations of the training data 
resulted in systematic underprediction of larger fluxes.

The ANN parametrizations, developed in C23 and validated in this study, have been recalibrated on an augmented 
training data set that incorporates the observations from MOSAiC. The largest increase in variance explained (R 2) 
after recalibration was only seven percent, despite the training set growing by a factor of 4–5, indicating that a 
high level of generalizability has already been achieved. These updated parametrizations have been implemented 
as a Fortran subroutine, suitable for deployment in weather/climate models as a plug-in replacement for bulk 
algorithms (see Data Availability Statement). An important next step will be to perform sensitivity studies with 
these new parametrizations in a climate model. In this way, the implications for the polar atmosphere and melting 
of Arctic sea ice can be assessed.

Data Availability Statement
The following publicly available software tools can be used to reproduce the results presented in this study:

•  The Python library CDlib (Guemas, 2023a) provides functions to compute transfer coefficients and related 
variables (zeta, stability functions, aerodynamic and scalar roughness etc.), as well as to apply the bulk algo-
rithm parametrizations used in this study.

•  The Python library meteolib (Guemas,  2023b) provides functions to estimate meteorological parameters 
(humidity, latent heat as a function of temperature etc.).

•  The Fortran subroutine PolarFlux (Cummins, 2023) implements the neural network flux parametrizations 
developed in this study. The networks have been trained on all available data sets, including MOSAiC.

Neural network ensembles were fitted using the R package caret (Kuhn & Johnson, 2013), which itself depends 
on the R package nnet (Venables & Ripley, 2002) to fit the underlying models. Bootstrapping of model perfor-
mance metrics was performed using the R package boot (Canty & Ripley, 2022).

MOSAiC campaign sites
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The MOSAiC data used in this study are available from the National Science Foundation Arctic Data Center: met. 
tower (Cox et al., 2023); ASFS30 (Cox et al., 2023a); ASFS40 (Cox et al., 2023b), ASFS50 (Cox et al., 2023c).

Pre-MOSAiC observational campaigns

The SHEBA data are available from the NCAR Earth Observing Laboratory: met. tower (Andreas et al., 2007); 
PAM stations (Andreas et al., 2012). The ACCACIA flight data are available from the CEDA archive: MASIN 
(British Antarctic Survey (BAS), 2014); FAAM (Facility for Airborne Atmospheric Measurements et al., 2015). 
The ACSE cruise data are available from the CEDA archive (Brooks et al., 2022a). The AO16 cruise data are 
available from the CEDA archive (Brooks et al., 2022b). The NSIDC sea ice concentration data are available from 
the NSIDC archive (Meier et al., 2021).
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